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Résumé

Dans ce rapport nous faisons l’étude de l’article The latent topic block model for the co-
clustering of textual interaction data publié en 2019 par Bergé et. al. [Ber+19]. Le modèle
LTBM introduit dans l’article vise à réaliser un co-clustering d’interaction textuelle entre
deux ensembles d’individus/objets disjoints. On pourra penser par exemple aux clients
et produits d’un site de vente en ligne, les clients intéragissant avec les produits par des
commentaires. Ou encore aux utilisateurs et vidéos d’une plateforme tel que Youtube.
Nous présentons ici ce modèle ainsi que l’algorithme proposé pour en estimer les para-
mètres. Celui ci repose sur une méthode variationnelle pour maximiser la vraissemblance
du modèle. Nous en présentons également les performances sur quelques jeux de données
synthétique.
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1 Introduction

L’avènement du monde digital à conduit à une augmentation considérable du nombre de
données disponibles. Les méthodes de clustering sont un outil afin de regrouper les données
en groupes partageant des caractéristique commune et ainsi réduire la dimension des données.
De nombreuses méthodes de co-clustering permettent de grouper au même temps les lignes
et les colonnes d’une matrice d’intéraction entre deux groupes d’individus/objets, on citera
notamment la Latent Block Model (LBM, [BLZ16]), adapté à de nombreux type de données
(données réelles [Lom12], catégorielles [Ker+15]...). Ce modèle est par ailleurs très efficace
pour les données en grande dimension [Chr17]. Cependant, comme la plus part des méthodes
de co-clustering, le LBM ne permet pas d’utiliser des données texutelles.

L’article The latent topic block model for the co-clustering of textual interaction data de
Laurent R. Bergé, Charles Bouveyron, Marco Corneli et Pierre Latouche [Ber+19] vise donc
à étendre le LBM pour prendre en compte de tels données.

Plusieurs modèles existent afin de traiter des données textuelles, parmi lesquels le latent
semantic indexing (LSI, [Dee+90]), le probabilistic latent semantic analysis (pLSI), et le la-
tent Dirichlet allocation (LDA, [BNJ03b]). Le LDA, en raison de sa popularité croissante en
analyse statistique de texte, possède de nombreuses extension, comme le correlated topic mo-
del (CTM), qui aborde les corrélations entre les thèmes. Le LTBM se base sur le LDA afin
d’adapter le LBM au données textuels. Ce modèle est à penser en parallèle du stochastic to-
pic block model (STBM, [BLZ16]) à la différence que celui ci ne considère pas un ensemble
disjoints d’individus et d’objets mais un seul ensemble d’individu qui intéragissent entre eux,
plus adapté à des clustering sur des réseaux sociaux tel que Twitter.
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2 Théorie du LTBM

2.1 Le modèle

Figure 1 – Schéma du LTBM

Le LTBM cherche à modéliser l’intéraction entre deux ensembles distincts (individus et
objets). On modélise cette intéarction par une matrice d’incidence A ∈ {0, 1}M×P . Cependant
contrairement au cas du LBM pour des données binaires, une interaction observé entre un indi-
vidu i et un objet j (i.e. Aij = 1) est enrichie par des données textuelles (on pourra par exemple
penser à des commentaires de consommateurs sur des produits). Plus précisément si Aij = 1,
on dispose d’un ensemble de document {W d

ij , d ∈ {1, . . . , Dij}}, où W d
ij = (W dn

ij )n=1,...,Nd
ij

est
un vecteur de mots pris dans un dictionnaire de longueur V .

2.1.1 Modélisation des interactions

Comme pour le LBM, on suppose que les individus (lignes de A) sont regroupé dans Q
cluster. On introduit une matrice binaire Y de M lignes et Q colonnes tel que Yiq = 1 ssi le
i-ème individu appartient au q-ème cluster. On modèlise donc les lignes de Y par des vecteurs
aléatoires indépendants tel que P(Yiq = 1) = ρq, où ρ est un vecteur du Q-simplexe (noté
∆(Q)). De même on introduit une matrice X de taille P × L associé aux clusters colonnes,
dont les lignes sont indépendantes et tel que P(Xjl = 1) = δl, où δ ∈ ∆(L), L étant le nombre
de cluster colonnes. On suppose de plus que les matrice alétoires Y et X sont indépendantes.

Comme pour le LBM, on suppose que la probabilité d’interactions entre un individu i et un
objet j ne dépend que du cluster lignes de i (i.e. Yi) et du cluster colone de j (i.e. Xj). Ainsi,
conditionnellement à Yi et Xj , Aij suit une loi de Bernouilli : P(Aij = 1|YiqXjl = 1) = πql.
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On notera π la matrice de probabilité d’interaction. On peut alors écrire la vraissemblance de
la partie intéraction du modèle en conditionnant :

p(A, Y,X|π, ρ, δ) = p(A|Y,X, π) p(Y |ρ) p(X|, δ) (1)

2.1.2 Modélisation des documents

Jusque ici notre modèle est en tout point similaire à un LBM binaire. Cependant nous
n’avons pas encore pris en compte l’information apporté par les donées textuelles W .

L’article adopte le point de vu de la LDA [BNJ03a] qui considère que chaque mot dans un
document suit un loi de mélange sur K topic latents avec K à déterminer (cf 2.4). En contraste
avec la LDA, le LTBM fait le choix de considèrer que les topics latents n’est plus propre à
chaque documents mais simplement aux cluster ligne de l’individu (i.e. Yi) et du cluster colone
de l’objet (i.e. Xj). On introduit donc Zdn

ij , un vecteur aléatoire binaire de longueur K, tel
que Zdnk

ij = 1 ssi W dn
ij est tiré selon le k-ème sujet. Ainsi, conditionnellement à Yi et Xj , Zdnk

ij

suit une loi multinomiale :

Zdnk
ij |YiqXjlAij = 1 ∼ M(1, θql = (θql1, . . . , θqlK)), pour un certain θql ∈ ∆(K)

De plus le LTBM suppose que conditionnellement à Y , X et θ les Zd1
ij , . . . , Z

dNd
ij

ij sont
indépendants. Les proportions des sujets associès a chaque cluster θql est également vue comme
un vecteur aléatoire, suivant une distribution de Dirichlet de paramètres α = (α1, ..., αK).
Enfin on suppose que conditionnelement à Zdn

ij , W dn
ij suit une loi multinomiale :

W dn
ij |Zdnk

ij = 1 ∼ M(1, βk = (βk1, . . . , βkV )), pour un certain βk ∈ ∆(V )

En conditionnant, on peut alors écrire la vraisemblance de la partie textuelle du modèle :

p(W,Z, θ|A, Y,X, β, α) = p(W |Z,A, β) p(Z|A, Y,X, θ) p(θ|α) (2)

2.2 Inférence

On décrit dans cette partie l’approche utilisé pour maximiser la vraisemblance du modèle.
Afin de simplifier ce problème, l’article fait le choix de considérer α = (α1, . . . , αK) fixé et on
ne le considère donc pas comme un paramètre à optimiser. On cherche alors à maximiser la
log-vraisemblance du modèle complet par rapport aux paramètres (π, ρ, δ, β) et (Y,X) :

log p(W,A, Y,X|π, ρ, δ, β) = log p(W |A, Y,X, β) + log p(A, Y,X|π, ρ, δ) (3)

Le terme p(A, Y,X|π, ρ, δ) est obtenu à partir de 2 et peut se calculé explicitement. Intéressons
nous au terme log p(W |A, Y,X, β). Celui-ci, n’est pas calculable explicitement, on utilise donc
une approche variationnelle pour l’estimer. En considérant une distribution q sur (Z, θ), on
peut écrire la décomposition variationelle suivante :

log p(W |A, Y,X, β) =

∫
θ

∑
Z

q(Z, θ) log
p(W,Z, θ|A, Y,X, β)

q(Z, θ)
dθ

−
∫
θ

∑
Z

q(Z, θ) log
p(Z, θ|W,A, Y,X, β)

q(Z, θ)
dθ

6



On reconnaît alors que le deuxième terme est la divergence de Kullback-Leibler entre la distri-
bution a-priori estimé q(.) et la distribution réelle p( . |W,A, Y,X, β) sur le couple (Z, θ). Celle
ci est connue pour être positive ou nulle si et seulement si ces deux distributions sont égales.
On a donc que :

L(q(.)|A, Y,X, β) : =

∫
θ

∑
Z

q(Z, θ) log
p(W,Z, θ|A, Y,X, β)

q(Z, θ)
dθ ≤ log p(W |A, Y,X, β)

= Eq(Z,θ)

ï
log

p(W,Z, θ|A, Y,X, β)

q(Z, θ)

ò
≤ log p(W |A, Y,X, β)

A nouveau la distribution q(Z, θ) n’a pas d’expression explicite, cependant en utlisant une
approxiamtion par champ moyen (qui revient à supposer qu’il y a indépendance de la loi
a-priori) on peut réécrire :

q(Z, θ) = q(θ)q(Z) = q(θ)
M∏
i=1

P∏
j=1

Dij∏
d=1

Nd
ij∏

n=1

q(Zdn
ij ) (par indépendance des Zdn

ij )

Dès lors, on va chercher à maximiser la borne inférieur suivant de la log-vraisemblance :

log p(W,A, Y,X|π, ρ, δ, β) ≥ L(q(.)|A, Y,X, β) + log p(A, Y,X|π, ρ, δ) (4)

où le second terme est indépendant de l’approximation variationnelle utilisé. On obtient alors
la procèdure d’estimation suivante :

(i) Y et X étant fixé, on optimise la borne inférieur en appliquant un algorithme VEM
[Hat86] :

— On optimise L par rapport à la distribution a-priori q(Z, θ) en fixant les paramètres
(π, ρ, δ, γ) (E-step)

— La distribution a priori étant fixé on optimise L par rapport aux paramètres
(π, ρ, δ, γ) (M-step)

(ii) Les paramètres du modèle (π, ρ, δ, γ) étant fixé, on applique un algorithme de recherche
gloutonne pour optimiser Y et X

La proposition 1 de l’article caractérise la loi a-piori q(Zdn
ij ) comme une loi mutlinomiale et en

donne les paramètres optimaux toutes choses étant fixé par ailleurs. La proposition 2 fait de
même pour la loi q(θ) (cette fois caractérisé par une loi de Dirichlet).

Armé de ces deux résultats on peu alors réaliser la E-step de l’algorithme VEM. Enfin la
proposition 3 de l’article donne les paramètres (π, ρ, δ, β) optimaux et permet donc d’implé-
menter l’algorithme proposé.

2.3 Initialisation

Les algorithmes de maximisation de la vraisemblance sont connus pour être sensible à
l’initialisation et ne fournissent pas de garantie de convergence vers un maximum global. Dans
notre cas, nous avons besoin d’initialiser Y et X afin de pouvoir appliquer l’algorithme VEM.
Plusieurs solution sont proposé
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— Initialisation aléatoire de Y et X en faisant tourner plusieurs fois l’algorithme et conser-
ver le meilleur résultat.

— application d’autre méthode de clustering (k-means..)

L’article présente également une méthode spécifique au problème considéré. Celle ci crée
une matrice de similarité sur les lignes (resp. sur les colonnes) grâce au résultat d’une LDA
sur l’ensemble de tout les documents, puis applique un clustering spectrale sur celle ci afin
d’associer à chaque ligne (resp. colonne) un cluster initial.

2.4 Sélection de modèle

Jusqu’ici nous avons considéré les nombre de cluster Q et L, et K le nombre de sujet
connu. Pour les optimiser il est nécessaire de disposer d’un critère de sélection de modèle.
De plus le choix d’un critère de sélection doit être fait précautionneusement, l’erreur d’un
critère asymptotique tel que le BIC étant doublé (pour M et P ). De plus il faut renoncer à
l’utilisation de critère non asymptotique en raison de la difficulté combinatoire ajouté par les
variables latentes. L’article propose un critère de sélection de modèle reposant sur le critère
ICL (integrated classifiction lokelihood [BCG00], et est donnée par la proposition 4 de l’article.
Celui ci est tester par l’intermédiaire de données simulés ou Q, L et K sont connus.

3 Performance du modèle

Figure 2 – Résultat de notre algorithme

Afin d’évaluer le modèle, nous avons souhaité le tester sur des jeux de données simulés
ainsi que sur des jeux de données réelles. Nous avons alors chercher une implémentation sans
parvenir à en trouver une. Nous avons alors tenté de l’implémenter en python. Malheureu-
sement notre implémentation souffre du fait que le nombre de documents Dij est propre à
chaque interaction, de même que le nombre de mots Nd

ij est propre à chaque documents. En
effet ces tailles hétérogènes nous ont conduit à utiliser des listes pour stocker certains variables
du modèles (en partiucler les entrées textuelles W et ϕ, la variable stockant les paramètres
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des lois q(Zdn
ij )), nous empêchant de vectoriser nombres d’opérations de l’algorithme. Bien que

fonctionnel notre algorithme demande un temps de calcul trop long pour pouvoir mener une
étude sur les performance du modèle.

Le co-clustering est généré sur la figure de droite, pour chaque objet, on définit la répar-
tition entre les topic (le β). Pour chaque interaction on tire une centaine de mots du topic en
ajoutant un bruit (40% des mots ne proviennent pas du topic principal). On obtient finalement
le co-clustering de la figure de droit on remarque bien la présence de 3 clusters avec la couleur
indiquant le topic dont ont été tiré les textes.

On notera tout de même que l’article présente des résultats encourageant pour ce modèle,
celui ci ayant de meilleurs performances qu’un LMB ou qu’une LDA. Il semble également
s’adapter sans difficultés aux cas des matrices d’incidences sparse, les auteurs le testant sur
un jeu de données ou plus de 98% de la matrice d’incidence A est nulle avec des résultats
concluants.

4 Conclusion

L’article présente une nouvelle approche de co-clustering qui intègre à la fois des informa-
tions d’incidence et textuelles, se distinguant ainsi des méthodes telles que LBM qui se basent
uniquement sur la structure de la matrice d’incidence. Le modèle génératif nouvellement pro-
posé, LTBM, est détaillé, accompagné d’une procédure d’estimation visant à ajuster le modèle
aux données. Une comparaison avec le LBM démontre la pertinence du LTBM. De plus,
l’évolutivité de l’algorithme d’estimation est soulignée, le rendant adapté à des ensembles de
données volumineux. Enfin, l’approche prend en considération des matrices d’incidence sparse.

Pour les futures recherches, des extensions possibles sont suggérées. La sélection du mo-
dèle nécessite actuellement le calcul de l’ICL pour toutes les valeurs de Q, L et K dans une
plage donnée, ce qui peut conduire à un grand nombre de modèles à tester. Des alternatives
reposant sur des schémas de recherche gourmands pourraient être explorées, par exemple en
étendant l’algorithme de recherche avant au LTBM. L’idée serait d’effectuer des déplacements
sur la grille en Q, L, K où les déplacements acceptés induisent la plus forte augmentation du
critère ICL. Une recherche non exhaustive basée sur des algorithmes génétiques est également
mentionnée. Enfin, il serait intéressant de dériver une mesure pour évaluer l’importance des
documents et de la matrice binaire dans la partition des lignes/colonnes proposée par l’algo-
rithme.

9



5 Répartition du travail de Rédaction

Bien que notre travail ai été effectué en parallèle, les principaux contributeurs des diffé-
rentes parties sont les suivants :

— Pierre Cavalier : Introduction, Conclusion, Partie 3.

— Virgile Bertrand : Abstract, Partie 2.

Références

[Hat86] Richard J. Hathaway. « Another interpretation of the EM algorithm for mixture
distributions ». In : Statistics Probability Letters 4.2 (1986), p. 53-56. issn : 0167-
7152. doi : https://doi.org/10.1016/0167-7152(86)90016-7. url : https:
//www.sciencedirect.com/science/article/pii/0167715286900167.

[Dee+90] Scott Deerwester et al. « Indexing by Latent Semantic Analysis ». In : Journal
of the American Society for Information Science 41.6 (1990), p. 391.

[BCG00] C. Biernacki, G. Celeux et G. Govaert. « Assessing a mixture model for
clustering with the integrated completed likelihood ». In : IEEE Transactions on
Pattern Analysis and Machine Intelligence 22.7 (2000), p. 719-725. doi : 10.1109/
34.865189.

[BNJ03a] David M. Blei, Andrew Y. Ng et Michael I. Jordan. « Latent Dirichlet alloca-
tion ». In : Journal of Machine Learning Research 3.4-5 (2003). Cited by : 28086,
p. 993-1022. url : https://www.scopus.com/inward/record.uri?eid=2-s2.0-
0141607824&partnerID=40&md5=505ce8839ae28d1cb56a7ff91bd0ad2d.

[BNJ03b] David M. Blei, Andrew Y. Ng et Michael I. Jordan. « Latent dirichlet alloca-
tion ». In : J. Mach. Learn. Res. 3 (2003), p. 993-1022. issn : 1532-4435. doi :
http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993. url : http://portal.
acm.org/citation.cfm?id=944937.

[Lom12] Aurore Lomet. « Sélection de modèle pour la classification croisée de données
continues ». Thèse de doct. Compiègne, 2012.

[Ker+15] Christine Keribin et al. « Estimation and selection for the latent block model
on categorical data ». In : Statistics and Computing 25.6 (nov. 2015), p. 1201-
1216. issn : 1573-1375. doi : 10 . 1007 / s11222 - 014 - 9472 - 2. url : https :
//doi.org/10.1007/s11222-014-9472-2.

[BLZ16] Charles Bouveyron, P Latouche et Rawya Zreik. « The stochastic topic block
model for the clustering of vertices in networks with textual edges ». In : Statistics
and Computing (2016). doi : 10 . 1007 / s11222 - 016 - 9713 - 7. url : https :
//hal.science/hal-01299161.

[Ber+19] L. R. Bergé et al. « The latent topic block model for the co-clustering of textual
interaction data ». In : Computational Statistics & Data Analysis (2019).

[Chr17] Valérie Robert Christine Keribin Gilles Celeux. « he Latent Block Model : a
useful model for high dimensional data ». In : ISI 2017 - 61st world statistics
congress (Jul 2017).

10

https://doi.org/https://doi.org/10.1016/0167-7152(86)90016-7
https://www.sciencedirect.com/science/article/pii/0167715286900167
https://www.sciencedirect.com/science/article/pii/0167715286900167
https://doi.org/10.1109/34.865189
https://doi.org/10.1109/34.865189
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0141607824&partnerID=40&md5=505ce8839ae28d1cb56a7ff91bd0ad2d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0141607824&partnerID=40&md5=505ce8839ae28d1cb56a7ff91bd0ad2d
https://doi.org/http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993
http://portal.acm.org/citation.cfm?id=944937
http://portal.acm.org/citation.cfm?id=944937
https://doi.org/10.1007/s11222-014-9472-2
https://doi.org/10.1007/s11222-014-9472-2
https://doi.org/10.1007/s11222-014-9472-2
https://doi.org/10.1007/s11222-016-9713-7
https://hal.science/hal-01299161
https://hal.science/hal-01299161

	Introduction
	Théorie du LTBM
	Le modèle
	Modélisation des interactions
	Modélisation des documents

	Inférence
	Initialisation
	Sélection de modèle

	Performance du modèle
	Conclusion
	Répartition du travail de Rédaction

